

Year 6 Autumn 2 – Summer 1

Balloon Blaster

Design and Technology (Model Making)

As Designers we will explore the use of catapults and examine the mechanisms involved. We will take part in the Plastic Spoon Catapult Challenge to see how far we can propel a chocolate Malteser, before creating a larger more stable catapult structure. We will explore how cams turn rotary motion into linear movement and we will experiment with the different types of cams in order to design and make a toy suitable for younger children. Finally, we will explore the main types of simple machines: inclined planes, levers, pulleys, wedges, and screws. We will find out the uses of each of them and we will take part in the Balloon Blaster Challenge, where we will be required to make a device (in the Rube Goldberg style) that uses all of these machines in order to pop a balloon.

NC Content

- develop the creative, technical and practical expertise needed to perform everyday tasks confidently and to participate successfully in an increasingly technological world
- build and apply a repertoire of knowledge, understanding and skills in order to design and make high-quality prototypes and products for a wide range of users
- critique, evaluate and test their ideas and products and the work of others
- understand and apply the principles of nutrition and learn how to cook.

| Materials required for this unit:                           | Tools and equipment required for this unit:          | <u>Vocabulary</u> |
|-------------------------------------------------------------|------------------------------------------------------|-------------------|
|                                                             |                                                      | Lever             |
| <ul> <li>A range of different wood</li> </ul>               | Sandpaper                                            | Fulcrum           |
| <ul> <li>Card triangles (for joining)</li> </ul>            | <ul> <li>Markers and rulers for measuring</li> </ul> | Pivot             |
| Lollipop sticks                                             | Wood glue                                            | Load              |
| Elastic bands                                               | Clamps                                               | Rotary            |
| <ul> <li>Wooden circles and dowelling (for cams)</li> </ul> | Screws                                               | Linear            |
| • A range of alternative materials for creating             | Screwdrivers                                         | Cam               |
| toys and the balloon blaster.                               | Hand drill                                           | Pulley            |
| Balloons                                                    | Hack saws                                            | Lever             |
|                                                             | Glue guns                                            | Wedge             |
|                                                             | Hammers                                              | Plane             |
|                                                             | Nails                                                | Screw             |

## Episode 1 – Catapult Challenge



https://www.youtube.com/watch?v=DwZA3WS2TB4 https://www.youtube.com/watch?v=KZHLYsFHLHw https://www.youtube.com/watch?v=L79rlGVdZCQ

By the end of this learning sequence, children will know:

- About the history of different types of catapults, how they work and how they have changed.
- How levers work within a catapult and the vocabulary fulcrum, pivot, load and effort.
- How to create multiple cross-sectional diagrams to represent ideas with accurate measurements and explanations.
- How to measure, mark out and cut using junior hack saws with precision, finishing the cuts neatly.
- How to use wood glue/glue guns and joining triangles to create a precise join.
- How to create a working lever within a product.
- How to evaluate a product against the design criteria.

| Research                          | Design                             | Make                                   | Evaluate          |
|-----------------------------------|------------------------------------|----------------------------------------|-------------------|
| Procedural skill:                 | Procedural skill:                  | Procedural skill:                      | Procedural skill: |
| Combine elements of design from a | Design with the user in mind,      | Develop a range of practical skills to |                   |
| range of inspirational designers  | motivated by the service a product | create products (such as cutting,      |                   |

| throughout history, giving reason     | will offer (rather than simply for      | drilling and screwing, nailing, gluing, | Evaluate the design of products so    |
|---------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|
| for choices.                          | profit).                                | filing and sanding).                    | as to suggest improvements to the     |
| Create innovative designs that        | Make products through stages of         | Cut materials with precision and        | user experience.                      |
| improve upon existing products.       | prototypes, making continual            | refine the finish with appropriate      |                                       |
|                                       | refinements.                            | tools (such as sanding wood or          | NC Links:                             |
| NC links:                             | Ensure products have a high-quality     | making a more precise scissor cut       | Pupils should be taught to:           |
| Pupils should be taught to:           | finish, using art skills where          | after roughly cutting out a shape).     | Evaluate their ideas and products     |
| Understand how key events and         | appropriate.                            |                                         | against their own design criteria and |
| individuals in design and technology  | Use prototypes, cross-sectional         | NC Links:                               | consider the views of others to       |
| have helped shape the world.          | diagrams and computer aided             | Pupils should be taught to:             | improve their work.                   |
| Investigate and analyse a range of    | designs to represent designs.           | Select from and use a wider range       | Apply their understanding of how to   |
| existing products                     | Develop a range of practical skills to  | of tools and equipment to perform       | strengthen, stiffen and reinforce     |
|                                       | create products (such as cutting,       | practical tasks [for example, cutting,  | more complex structures.              |
| Explore the history of catapults and  | drilling and screwing, nailing, gluing, | shaping, joining and finishing],        |                                       |
| their purposes (link to conflict      | filing and sanding).                    | accurately.                             | Test the catapult and evaluate        |
| topic). How have catapults changed    | Cut materials with precision and        | Select from and use a wider range       | against the design criteria. Does it  |
| throughout history? Give reasons      | refine the finish with appropriate      | of materials and components,            | work as expected? Are there any       |
| for why.                              | tools (such as sanding wood or          | including construction materials,       | issues? (e.g. the catapult may        |
|                                       | making a more precise scissor cut       | textiles and ingredients, according     | bounce/flip once released). How       |
| Explore the lever as a mechanism.     | after roughly cutting out a shape).     | to their functional properties and      | could the design be improved?         |
| Use this vocabulary when exploring    |                                         | aesthetic qualities.                    |                                       |
| levers: fulcrum, pivot, load, effort. | NC Links:                               | Apply their understanding of how to     | Make adjustments to the product as    |
| This website may help and this one.   | Pupils should be taught to:             | strengthen, stiffen and reinforce       | required and re-test. Is the product  |
|                                       | Use research and develop design         | more complex structures.                | more suitable/effective?              |
| Explore how a catapult works and      | criteria to inform the design of        | Understand and use mechanical           |                                       |
| the different types of catapults      | innovative, functional,                 | systems in their products [for          |                                       |
| (ballista, trebuchet and mangonel)    | appealing products that are fit for     | example, gears, pulleys, cams,          |                                       |
| and identify their features (sling,   | purpose, aimed at particular            | levers and linkages]                    |                                       |
| bucket, restraining rope, cantilever- | individuals or groups.                  |                                         |                                       |
| type spring, arm, rope etc.) How are  | Generate, develop, model and            | Measure and mark out the required       |                                       |
| the levers used in each catapult?     | communicate their ideas through         | wooden pieces to the nearest mm.        |                                       |
| Compare their effectiveness. Is one   | discussion, annotated                   |                                         |                                       |
| more effective than the other?        |                                         |                                         |                                       |

| Why? Explore their design and    | sketches, cross-sectional and                 | Cut with precision using junior hack |  |
|----------------------------------|-----------------------------------------------|--------------------------------------|--|
| frame and discuss how they could | exploded diagrams, prototypes,                | saws and clamps. Ensure cuts are     |  |
| be recreated.                    | pattern pieces and                            | straight and finish using sandpaper. |  |
|                                  | computer-aided design.                        |                                      |  |
|                                  |                                               | Use wood glue and/or glue guns,      |  |
|                                  | Design criteria:                              | joining triangles and clamps to join |  |
|                                  | You are going to create a Roman-              | the pieces for each frame together.  |  |
|                                  | style catapult (mangonel) that can            |                                      |  |
|                                  | fire a ball across at least a 1m              | Use hammers and nails to attach      |  |
|                                  | distance. The catapult should shoot           | the elastic for the cantilever-type  |  |
|                                  | the load with a force strong enough           | spring.                              |  |
|                                  | to knock down a Lego wall.                    |                                      |  |
|                                  |                                               | Use wood glue and/or glue guns and   |  |
|                                  | Create a design for the base frame            | joining triangles to join all        |  |
|                                  | and the supporting arch, showing              | components of the catapult           |  |
|                                  | measurements (to the nearest mm)              | together.                            |  |
|                                  | and joins (similar to in <u>this video</u> at |                                      |  |
|                                  | 1:50, 4:42) as well as showing the            |                                      |  |
|                                  | design from a side view to show the           |                                      |  |
|                                  | supports and the catapult. Write the          |                                      |  |
|                                  | required tools and materials and              |                                      |  |
|                                  | write out a method of creating each           |                                      |  |
|                                  | section with an explanation of how            |                                      |  |
|                                  | the catapult will work.                       |                                      |  |
|                                  |                                               |                                      |  |
|                                  | Create a prototype using lollypop             |                                      |  |
|                                  | sticks to explore how the lever               |                                      |  |
|                                  | mechanism will work and how the               |                                      |  |
|                                  | frame needs to be joined. Explain             |                                      |  |
|                                  | using Seesaw how it works. Make               |                                      |  |
|                                  | sure to use accurate vocabulary               |                                      |  |
|                                  | (bucket, payload, arm, rope,                  |                                      |  |
|                                  | cantilever-type spring, frame,                |                                      |  |



| Practise using wood glue and glue<br>guns to join wood together and use<br>joining triangles to ensure a right<br>angle.           |  |
|------------------------------------------------------------------------------------------------------------------------------------|--|
| Practise using hammers accurately<br>on nails (to secure the elastic band<br>to the wood creating the cantilever-<br>type spring). |  |
| Explore which materials are best<br>suited to create the bucket. Explore<br>methods of joining these to the<br>wood.               |  |

Episode 2 – We Are Smyths Toy Store

Using cams to convert rotary motion into linear motion to create a toy that travels in a straight line.

https://planbee.com/products/moving-toys#:~:text=They%20will%20learn%20that%20a,with%20cam%20mechanisms%20for%20themselves.

https://www.youtube.com/watch?v=tzWQasmUfLY

https://www.youtube.com/watch?v=2vCLmxslavo

## https://www.twinkl.co.uk/resource/t2-d-072-moving-toys-cam-mechanisms-lesson-teaching-pack

https://www.youtube.com/watch?v=2vCLmxslavo&t



By the end of this learning sequence, children will:

- Know that cams are used to turn rotary motion into linear motion.
- Know the components of a cam and the different types.
- Know how to use real research to gage user interests and needs, and use this to inform the design when creating exploded diagrams.
- Use a range of tools (drills, hack saws, clamps, hammers) to measure and cut materials accurately, giving reasons for choice dependent on the material used.
- Use a range of joining methods appropriately, justifying the method dependent upon the materials used.
- Use the intended audience to evaluate their product, and make adjustments accordingly.

| Research                          | Design                              | Make                                    | Evaluate                           |
|-----------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|
| Procedural skill:                 | Procedural skill:                   | Procedural skill:                       | Procedural skill:                  |
| Combine elements of design from a | Design with the user in mind,       | Develop a range of practical skills to  | Evaluate the design of products so |
| range of inspirational designers  | motivated by the service a product  | create products (such as cutting,       | as to suggest improvements to the  |
| throughout history, giving reason | will offer (rather than simply for  | drilling and screwing, nailing, gluing, | user experience.                   |
| for choices.                      | profit).                            | filing and sanding).                    |                                    |
| Create innovative designs that    | Ensure products have a high-quality | Cut materials with precision and        | NC Links:                          |
| improve upon existing products.   | finish, using art skills where      | refine the finish with appropriate      | Pupils should be taught to:        |
|                                   | appropriate.                        | tools (such as sanding wood or          |                                    |

| NC links:                            | Use prototypes, cross-sectional         | making a more precise scissor cut      | Evaluate their ideas and products     |
|--------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|
| Pupils should be taught to:          | diagrams and computer aided             | after roughly cutting out a shape).    | against their own design criteria and |
| Understand how key events and        | designs to represent designs.           | Show an understanding of the           | consider the views of others to       |
| individuals in design and technology | Develop a range of practical skills to  | qualities of materials to choose       | improve their work.                   |
| have helped shape the world.         | create products (such as cutting,       | appropriate tools to cut and shape     | Apply their understanding of how to   |
| Investigate and analyse a range of   | drilling and screwing, nailing, gluing, | (such as the nature of fabric may      | strengthen, stiffen and reinforce     |
| existing products                    | filing and sanding).                    | require sharper scissors than those    | more complex structures.              |
|                                      | Cut materials with precision and        | used to cut paper).                    |                                       |
| Know that linear movement means      | refine the finish with appropriate      | Ensure products have a high-quality    | Test the product to ensure that it    |
| moving in a straight line, up or     | tools (such as sanding wood or          | finish, using art skills where         | works as it should. Take back to the  |
| down. Know that rotary movement      | making a more precise scissor cut       | appropriate.                           | desired audience to gather feedback   |
| is turning around in a circle.       | after roughly cutting out a shape).     |                                        | on functionality and design. Make     |
|                                      | Show an understanding of the            | NC Links:                              | adjustments to the product in         |
| Explore how toys can use CAMS in     | qualities of materials to choose        | Pupils should be taught to:            | accordance with the feedback, and     |
| order to move. Think about what is   | appropriate tools to cut and shape      | Select from and use a wider range      | evaluate against the design criteria. |
| happening and how each of the        | (such as the nature of fabric may       | of tools and equipment to perform      |                                       |
| parts are moving. Acknowledge that   | require sharper scissors than those     | practical tasks [for example, cutting, |                                       |
| CAMS are used to turn rotary         | used to cut paper).                     | shaping, joining and finishing],       |                                       |
| motion into linear motion.           |                                         | accurately.                            |                                       |
|                                      | NC Links:                               | Select from and use a wider range      |                                       |
| Explore the materials used to create | Pupils should be taught to:             | of materials and components,           |                                       |
| toys using CAMS. Have these          | Use research and develop design         | including construction materials,      |                                       |
| changed over time? Why do you        | criteria to inform the design of        | textiles and ingredients, according    |                                       |
| think this is?                       | innovative, functional,                 | to their functional properties and     |                                       |
|                                      | appealing products that are fit for     | aesthetic qualities.                   |                                       |
| Explore the three components of a    | purpose, aimed at particular            | Apply their understanding of how to    |                                       |
| cam mechanism (cam, slider and       | individuals or groups.                  | strengthen, stiffen and reinforce      |                                       |
| follower) and be able to explain     | Generate, develop, model and            | more complex structures.               |                                       |
| how the three work together to       | communicate their ideas through         | Understand and use mechanical          |                                       |
| create movement.                     | discussion, annotated                   | systems in their products [for         |                                       |
|                                      | sketches, cross-sectional and           | example, gears, pulleys, cams,         |                                       |
| Explore the different types of cams  | exploded diagrams, prototypes,          | levers and linkages]                   |                                       |
| and know how these create            | pattern pieces and                      |                                        |                                       |

| different movements (round, egg-     | computer-aided design.                | Measure and mark out the required     |  |
|--------------------------------------|---------------------------------------|---------------------------------------|--|
| shaped, ellipse, eccentric, hexagon, |                                       | pieces to the nearest mm.             |  |
| snail).                              | Design criteria:                      |                                       |  |
|                                      | You are going to create a toy that is | Cut with precision using junior hack  |  |
|                                      | suitable for younger children. It     | saws (or other appropriate cutting    |  |
|                                      | must use at least 2 cams and have     | tools, dependent on the materials     |  |
|                                      | an appealing design. You must use     | used) and clamps. Ensure cuts are     |  |
|                                      | research to form the base of your     | straight and finish using sandpaper.  |  |
|                                      | design.                               |                                       |  |
|                                      |                                       | Use drills to drill straight,         |  |
|                                      | Explore with different materials that | accurately-sized holes for the cam    |  |
|                                      | would be suitable to create a cam     | mechanism.                            |  |
|                                      | mechanism.                            |                                       |  |
|                                      |                                       | Use appropriate joining methods to    |  |
|                                      | Carry out research using surveys,     | join the materials together to create |  |
|                                      | interviews and questionnaires to      | a strong, stable structure.           |  |
|                                      | identify the needs, wants and         |                                       |  |
|                                      | preferences of the target audience    | Use hammers and nails (where          |  |
|                                      | (younger children). Use this to       | appropriate/if necessary) to secure   |  |
|                                      | inform design ideas.                  | the frame for the toy.                |  |
|                                      |                                       |                                       |  |
|                                      | Create exploded diagrams (with        |                                       |  |
|                                      | accurate measurements) to             |                                       |  |
|                                      | communicate design ideas and be       |                                       |  |
|                                      | able to explain how the design will   |                                       |  |
|                                      | work, and also how it meets the       |                                       |  |
|                                      | needs/wants of the intended user.     |                                       |  |
|                                      |                                       |                                       |  |
|                                      | Practise measuring, marking and       |                                       |  |
|                                      | sawing wood using junior hack saws    |                                       |  |
|                                      | (or other appropriate cutting tools)  |                                       |  |
|                                      | on the range of materials required    |                                       |  |
|                                      | to create the toy.                    |                                       |  |

| Practise using sandpaper to finish<br>the wood cuts.<br>Practise using a range of joining<br>methods to determine the best<br>method for joining the different<br>materials. (i.e. what is the best for<br>joining wood, plastic, wire etc.<br>where appropriate). |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Practise using hammers accurately<br>on nails to ensure they are<br>hammered in straight (where<br>appropriate).                                                                                                                                                   |  |
| Practise using junior drills to<br>accurately drill straight holes into<br>the wood (for the cam mechanism).                                                                                                                                                       |  |



- Be able to identify examples of Rube Goldberg-style inventions from films or the real world (e.g. Wallace and Gromit).
- Know how simple machines work (inclined planes, wedges, levers, pulleys and screws) and be able to replicate these when designing a product to accomplish a simple task.
- Be able to use a range of measuring, cutting, joining and finishing methods to combine mechanisms and create a product to accomplish a simple task.
- Evaluate a product against design criteria and make necessary adjustments.

| Research          | Design            | Make              | Evaluate          |
|-------------------|-------------------|-------------------|-------------------|
| Procedural skill: | Procedural skill: | Procedural skill: | Procedural skill: |

| Combine elements of design from a    | Design with the user in mind,           | Develop a range of practical skills to  | Evaluate the design of products so    |
|--------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|
| range of inspirational designers     | motivated by the service a product      | create products (such as cutting,       | as to suggest improvements to the     |
| throughout history, giving reason    | will offer (rather than simply for      | drilling and screwing, nailing, gluing, | user experience.                      |
| for choices.                         | profit).                                | filing and sanding).                    |                                       |
| Create innovative designs that       | Make products through stages of         | Cut materials with precision and        | NC Links:                             |
| improve upon existing products.      | prototypes, making continual            | refine the finish with appropriate      | Pupils should be taught to:           |
|                                      | refinements.                            | tools (such as sanding wood or          | Evaluate their ideas and products     |
| NC links:                            | Ensure products have a high-quality     | making a more precise scissor cut       | against their own design criteria and |
| Pupils should be taught to:          | finish, using art skills where          | after roughly cutting out a shape).     | consider the views of others to       |
| Understand how key events and        | appropriate.                            | Show an understanding of the            | improve their work.                   |
| individuals in design and technology | Use prototypes, cross-sectional         | qualities of materials to choose        | Apply their understanding of how to   |
| have helped shape the world.         | diagrams and computer aided             | appropriate tools to cut and shape      | strengthen, stiffen and reinforce     |
| Investigate and analyse a range of   | designs to represent designs.           | (such as the nature of fabric may       | more complex structures.              |
| existing products                    | Develop a range of practical skills to  | require sharper scissors than those     |                                       |
|                                      | create products (such as cutting,       | used to cut paper).                     | Test that the product works as        |
| Research into Rube Goldberg's        | drilling and screwing, nailing, gluing, | Ensure products have a high-quality     | expected and meets the design         |
| elaborate designs. Know that Rube    | filing and sanding).                    | finish, using art skills where          | criteria. Evaluate the product and    |
| Goldberg is famous for his elaborate | Cut materials with precision and        | appropriate.                            | make any necessary adjustments        |
| illustrations of contraptions that   | refine the finish with appropriate      |                                         | before re-testing.                    |
| combine a range of mechanical        | tools (such as sanding wood or          | NC Links:                               |                                       |
| elements to accomplish simple        | making a more precise scissor cut       | Pupils should be taught to:             |                                       |
| tasks.                               | after roughly cutting out a shape).     | Select from and use a wider range       |                                       |
|                                      |                                         | of tools and equipment to perform       |                                       |
| Explore a range of examples of Rube  | NC Links:                               | practical tasks [for example, cutting,  |                                       |
| Goldberg-style contraptions. (The    | Pupils should be taught to:             | shaping, joining and finishing],        |                                       |
| children could play the game Mouse   | Use research and develop design         | accurately.                             |                                       |
| Trap – this is a classic example of  | criteria to inform the design of        | Select from and use a wider range       |                                       |
| the Rube Goldberg machine).          | innovative, functional,                 | of materials and components,            |                                       |
|                                      | appealing products that are fit for     | including construction materials,       |                                       |
| Explore the main types of simple     | purpose, aimed at particular            | textiles and ingredients, according     |                                       |
| machines: including inclined planes, | individuals or groups.                  | to their functional properties and      |                                       |
| levers, pulleys, wedges and screws.  |                                         | aesthetic qualities.                    |                                       |
| (info and definitions and this       |                                         |                                         |                                       |

| website is useful too). How does  | Generate, develop, model and        | Apply their understanding of how to   |  |
|-----------------------------------|-------------------------------------|---------------------------------------|--|
| each of them work? What materials | communicate their ideas through     | strengthen, stiffen and reinforce     |  |
| can be used for each one?         | discussion, annotated               | more complex structures.              |  |
|                                   | sketches, cross-sectional and       | Understand and use mechanical         |  |
|                                   | exploded diagrams, prototypes,      | systems in their products [for        |  |
|                                   | pattern pieces and                  | example, gears, pulleys, cams,        |  |
|                                   | computer-aided design.              | levers and linkages]                  |  |
|                                   |                                     |                                       |  |
|                                   | Design Criteria.                    | Measure and mark out the required     |  |
|                                   | You are going to make an elaborate  | pieces to the nearest mm.             |  |
|                                   | machine to achieve the simple task  |                                       |  |
|                                   | of popping a balloon. You must      | Cut with precision using junior hack  |  |
|                                   | consider how to combine a range of  | saws (or other appropriate cutting    |  |
|                                   | simple machines to achieve this     | tools, dependent on the materials     |  |
|                                   | outcome. The contraption must be    | used) and clamps. Ensure cuts are     |  |
|                                   | simple to use.                      | straight and finish using sandpaper.  |  |
|                                   |                                     |                                       |  |
|                                   | Experiment with combining each      | Use drills to drill straight,         |  |
|                                   | type of simple machine (inclined    | accurately-sized holes (where         |  |
|                                   | plane, lever, pulley, wedge and     | necessary).                           |  |
|                                   | screw). In what order should the    |                                       |  |
|                                   | mechanisms be put together in       | Use appropriate joining methods to    |  |
|                                   | order to achieve the outcome?       | join the materials together to create |  |
|                                   |                                     | a strong, stable structure.           |  |
|                                   | Consider which materials, tools and |                                       |  |
|                                   | joining methods are the most        | Use hammers and nails (where          |  |
|                                   | effective for the frame of the      | appropriate/if necessary).            |  |
|                                   | machine and then for each of the    |                                       |  |
|                                   | components. Justify reasoning.      | Use knowledge of how to stiffen       |  |
|                                   |                                     | and secure materials to create a      |  |
|                                   | Create exploded diagrams (with      | sturdy structure with effective,      |  |
|                                   | accurate measurements and           | working mechanisms.                   |  |
|                                   | tools/materials required) to        |                                       |  |

| demonstrate how the machine will        |  |
|-----------------------------------------|--|
| work. Create a computer-aided           |  |
| design of the product using             |  |
| TinkerCad (Useful document in 365       |  |
| to support using this).                 |  |
|                                         |  |
| Practise measuring, marking and         |  |
| sawing wood using junior hack saws      |  |
| (or other appropriate cutting tools)    |  |
| on the range of materials required      |  |
| to create the machine.                  |  |
|                                         |  |
| Practise using sandpaper to finish      |  |
| the wood cuts.                          |  |
|                                         |  |
| Practise using a range of joining       |  |
| methods to determine the best           |  |
| method for joining the different        |  |
| materials. (i.e. what is the best for   |  |
| joining wood, plastic, wire etc.        |  |
| where appropriate).                     |  |
|                                         |  |
| Practise using hammers accurately       |  |
| on nails to ensure they are             |  |
| hammered in straight (where             |  |
| appropriate).                           |  |
| ,                                       |  |
| Practise using junior drills to         |  |
| accurately drill straight holes into    |  |
| the wood (where appropriate).           |  |
| - · · · · · · · · · · · · · · · · · · · |  |
|                                         |  |