

Year 3 Autumn 1 – Summer 1

Make a Banana Keyboard

Design and Technology (Computing & Electronics)

As Designers we will explore electricity and conductivity. We will link this to science and understand how series circuits are used/made. We will then use this understanding to design a range of products that can be controlled using a MakeyMakey kit. We will begin by recreating 3 identified products, and then we will use our knowledge of useful electrical devices to recreate our own using a MakeyMakey kit. We will also learn about pioneers in the video game industry as part of this unit.

NC Content

- develop the creative, technical and practical expertise needed to perform everyday tasks confidently and to participate successfully in an increasingly technological world
- build and apply a repertoire of knowledge, understanding and skills in order to design and make high-quality prototypes and products for a wide range of users
- critique, evaluate and test their ideas and products and the work of others
- understand and apply the principles of nutrition and learn how to cook.

Materials required for this unit: For creating the physical part of products: Card Cardboard Wood??? Recycled materials (e.g. plastic bottles etc.) Play dough Conductive objects	 Tools and equipment required for this unit: Makey Makey kits (micro USB cable, crocodile clips, controller) Laptops/Chromebooks Scratch website For creating the physical part of products: Glue Nails/screws? Scissors Junior hack saws 	Vocabulary disassemble inventor pioneers efficiency appropriate series accuracy precision effectiveness suitable mechanisms
---	--	--

	Episode 1 – Make a banana Keyboard			
By the end of this learning sequence, c	hildren will know:			
 How to create an open 	How to create an open and closed series circuit.			
Know which materials	Know which materials are conductors of electricity.			
 How a Makey Makey k 	How a Makey Makey kit works.			
 How to design and mal 	ke a product fit for purpose using a des	sign brief.		
How to evaluate a proc	duct against a design brief and make ar	mendments to a product to make it mo	re suitable for purpose.	
Research	Design	Make	Evaluate	
Procedural skill:	Procedural skill:	Procedural skill:	Procedural skill:	
Be able to create series circuits.	Design with purpose by identifying	Be able to create series circuits.	Control and monitor models using	
Disassemble products to understand	opportunities to design.	Control and monitor models using	software designed for this purpose.	
how they work.		software designed for this purpose.	Improve upon existing designs,	
Control and monitor models using	NC links:	Make products by working	giving reasons for choices.	
software designed for this purpose.	Pupils should be taught to:	efficiently (such as by carefully	Refine work and techniques as work	
	Use research and develop design	selecting materials).	progresses, continually evaluating	
NC links:	criteria to inform the design of	Refine work and techniques as work	the product design.	
Pupils should be taught to:	innovative, functional, appealing	progresses, continually evaluating		
Understand and use electrical	products that are fit for purpose,	the product design.	NC links:	
systems in their products [for	aimed at particular individuals or		Pupils should be taught to:	
example, series circuits incorporating	groups.	NC links:	Evaluate their ideas and products	
switches, bulbs, buzzers and motors].	Generate, develop, model and	Pupils should be taught to:	against their own design criteria	
Understand how key events and	communicate their ideas through	Select from and use a wider range	and consider the views of others to	
individuals in design and technology	discussion, annotated sketches,	of materials and components,	improve their work.	
have helped shape the world.	cross-sectional and exploded	including construction materials,		
	diagrams, prototypes, pattern	textiles and ingredients, according	Identify the strengths and areas for	
Identify real-world appliances that	pieces and computer-aided design.	to their functional properties and	development in their product by	
use electricity (battery/mains	Understand and use electrical	aesthetic qualities.	evaluating this against the design	
operated).	systems in their products.	Computing NC Links:	criteria in terms of accessibility and	
		use logical reasoning to explain how	ease. Is it fit for purpose? How can	
Know the requirements of a series	Design Criteria	some simple algorithms work and	it be improved? Try to play the tune	
circuit.	Mrs Pearce would like you to make	to detect and correct errors in	Twinkle Twinkle Little Star (CC GG	
	a simple piano using the Makey	algorithms and programs.	AA G FF EE DD C). What	
	Makey kit and every day objects. It			

Construct a complete and broken	must be easy to use, be made from	Refer to their design criteria as they	problems do they come across?
circuit.	cheap, every-day materials, be able	make the banana keyboard.	How can this be fixed?
	to play the notes C,D,E,F,G and A,	Children to create the keyboard	
Explore MakeyMakey kit and how it	and be fun for younger children.	ensuring that all wires are	Consider the views of others,
works. Use knowledge of series		connected to the appropriate	including intended users, to
circuits.	Create an annotated sketch to	components. Encourage children to	improve their work.
https://apps.makeymakey.com/piano	communicate design ideas. This	debug throughout (look for and	
	should draw upon previous	solve errors).	Redesign the product taking into
Do children recognise how it makes a	research. This must be annotated		account the evaluation. Explain why
complete circuit? Grounding	with the key elements of the		they have changed the product and
themselves to the MakeyMakey	product. Materials and equipment		how this will improve it (this can be
forms complete circuit.	required must also be noted.		done verbally through Seesaw).
			Points to consider:
Explain how this works using key	Children to order the main stages of		You could encourage children to
vocab: electricity, battery, earth,	making the product.		think about the fact that having a
wires, closed circuit, conductive.			banana for each note will be
	Explain how the product will work		confusing and they could therefore
Identify and list conductive materials.	and how it will be fit for purpose.		redesign their product to use
What is meant by			varying fruits, label the notes on
"conductivity"? Test different objects	Indicate how the design features of		each banana, place the notes in
with the Makey Makey kit to identify	their products will appeal to		order, organise wires neatly etc.
potential objects that can be used	intended users.		
throughout the project – which ones			Make amendments to product from
do/don't work and why?			evaluation.
			Re-evaluate product against design
			criteria. Is it better fit for purpose
			now? Encourage children to test
			this by engaging with the target
			audience. Ask Y1/Y2 children to
			come and use the keyboard to play
			twinkle twinkle and get feedback
			from them.

Episode 2 – Make Musical Water Using Scratch				
By the end of this learning sequence, children will know:				
About the conductivi	• About the conductivity of water.			
How to design, write	and debug programs that use selection	n. (Computing)		
How to incorporate e	electrical/computing components into a	a product.		
How to evaluate agai	inst a design criteria.			
Research	Design	Make	Evaluate	
Procedural skill:	Procedural skill:	Procedural skill:	Procedural skill:	
Create series and parallel circuits.	Design with purpose by identifying	Be able to create series circuits.	Improve upon existing designs,	
	opportunities to design.	Control and monitor models using	giving reasons for choices.	
NC links:	Make products by working	software designed for this purpose.	Refine work and techniques as work	
Pupils should be taught to:	efficiently (such as by carefully	Make products by working	progresses, continually evaluating	
understand and use electrical	selecting materials).	efficiently (such as by carefully	the product design.	
systems in their products [for		selecting materials).		
example, series circuits	NC links:	Refine work and techniques as work	NC links:	
incorporating switches, bulbs,	Pupils should be taught to:	progresses, continually evaluating	Pupils should be taught to:	
buzzers and motors]	Use research and develop design	the product design	Evaluate their ideas and products	
	criteria to inform the design of	Create series circuits.	against their own design criteria and	
Explore the conductivity of water.	innovative, functional, appealing		consider the views of others to	
Can this be used with the	products that are fit for purpose,	NC links:	improve their work.	
MakeyMakey kit? Children to	aimed at particular individuals or	Pupils should be taught to:		
investigate with this. Test with	groups.	Select from and use a wider range	Evaluate the program and control	
varying liquids and amounts.	Generate, develop, model and	of materials and components,	against the design criteria to	
	communicate their ideas through	including construction materials,	determine whether it is fit for	
	discussion, annotated sketches,	textiles and ingredients, according	purpose. Identify the strengths and	
	cross-sectional and exploded	to their functional properties and	areas for development.	
		aesthetic qualities.		

diagrams, prototypes, pattern pieces and computer-aided design. Computing NC Links: Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs. <u>Design Criteria</u> You need to program a musical system that is controlled by water. This part of the unit links to the Year 3 Computer Science objectives. Please see the <u>computing overview</u> to ensure children are meeting these curriculum objectives throughout this episode. Note: Children do NOT need to use repetition in this episode, that will come in the next one. Observe a range of working programs that use music. Decompose the key elements and use logical reasoning to predict what is going to happen. Example of using sounds: (https://projects.raspberrypi .org/en/projects/rock-band)	Select from and use a wider range of tools and equipment to perform practical tasks [for example, cutting, shaping, joining and finishing], accurately. Understand and use electrical systems in their products [for example, series circuits incorporating switches, bulbs, buzzers and motors]. Apply their understanding of computing to program, monitor and control their products. Computing NC Links: design, write and debug programs that accomplish specific goals; solve problems by decomposing them into smaller parts. Use sequence in programs; work with various forms of input and output. Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs Create the program using Scratch, according to their plan. Design, write and debug the program to create a program that plays sounds when the arrow keys are pressed.	Use the feedback from evaluation to suggest improvements and change/adapt the design of the water-controls accordingly. E.G. making it easier to use, changing the aesthetics, dying the water to be different colours etc.
<u>.org/en/projects/rock-band</u>)	when the arrow keys are pressed.	

Recognise that the button presses	Assemble the components required	
are an input and that the sound is	for the water-based controls.	
an output.		
	Combine the electrical components	
Explore the controls required for	from the Makey Makey kit and	
the music to be played (think about	connect these to the laptop to work	
which keys can be controlled by the	with the Scratch program.	
Makey Makey). Use Scratch to		
program so that when the left, right,		
up and down arrows are pressed, a		
different sound is played. Discuss		
sequencing and then algorithms		
must execute in a specific order.		
Generate ideas around how the		
Makey Makey kit can be		
programmed to create a musical		
instrument/series of music. (Note:		
You can also control WASDFG keys		
by using the jumper wires -		
https://www.youtube.com/		
watch?v=ulxE_5zFjN8&t=113s)		
Create an annotated sketch and		
explain how the design will work.		
Create a list of required materials		
and equipment. Children must link		
this knowledge back to conductivity		
and an understanding of how to		
make a closed series circuit.		
Create a plan for the musical		
program using Scratch. Make a		
rough note of the algorithms that		

might be used and explain how this will work. It may be useful to create	
a storyboard to plan out the	
program.	

Episode 3 – Make a Game Controller				
Example in this video: <u>https://you</u>	Example in this video: https://youtu.be/rfQqh7iCcOU (note how they attached the earth to their wrist for ease – this could be an evaluation point)			
By the end of this learning sequence,	children will know:			
 How game designers 	through history have shaped the world	of game design.		
 How different types or 	f game controllers work, and know that	t buttons work by completing a circuit.		
 How to create design 	criteria by gathering information abou	t user needs.		
 How to design, write 	and debug programs that use repetitio	n. (Computing)		
 How to select from ar 	nd use a range of tools and equipment	to perform practical tasks, and how to in	ncorporate electrical/computing	
components into a product.				
 How to evaluate again 	nst a design criteria and draw upon fee	dback from the intended user to make a	amendments.	
Research	Design	Make	Evaluate	
Procedural skill:	Procedural skill:	Procedural skill:	Procedural skill:	
Identify some of the great designers	Design with purpose by identifying	Be able to create series circuits.	Improve upon existing designs,	
in all of the areas of study (including	opportunities to design.	Control and monitor models using	giving reasons for choices.	
pioneers in horticultural techniques)	Make products by working	software designed for this purpose.	Refine work and techniques as work	
to generate ideas for designs.	efficiently (such as by carefully	Make products by working	progresses, continually evaluating	
Disassemble products to understand	selecting materials).	efficiently (such as by carefully	the product design.	
how they work.	Choose suitable techniques to	selecting materials).		
	construct products.	Refine work and techniques as work	NC links:	
NC links:	Strengthen materials using suitable	progresses, continually evaluating	Pupils should be taught to:	
Pupils should be taught to:	techniques.	the product design	Evaluate their ideas and products	
			against their own design criteria and	

understand and use electrical		Choose suitable techniques to	consider the views of others to
systems in their products [for	NC links:	construct products.	improve their work.
example, series circuits	Pupils should be taught to:	Strengthen materials using suitable	
incorporating switches, bulbs,	Use research and develop design	techniques.	Evaluate the controller against the
buzzers and motors]	criteria to inform the design of	Create series circuits.	design criteria to determine
Investigate and analyse a range of	innovative, functional, appealing	Cut materials accurately and safely	whether it is fit for purpose. Identify
existing products.	products that are fit for purpose,	by selecting appropriate tools.	the strengths and areas for
Understand how key events and	aimed at particular individuals or	Measure and mark out to the	development, considering the views
individuals in design and technology	groups.	nearest millimetre.	of the intended audience.
have helped shape the world.	Generate, develop, model and	Select appropriate joining	
	communicate their ideas through	techniques.	Use the feedback from evaluation to
Research into important figures in	discussion, annotated sketches,		suggest improvements and
the gaming industry:	cross-sectional and exploded	NC links:	change/adapt the design of the
• William	diagrams, prototypes, pattern	Pupils should be taught to:	controller accordingly. E.G. making
Higinbotham, 1958, created	pieces and computer-aided design.	Select from and use a wider range	it easier to use, changing the
the first video game –	Computing NC Links:	of materials and components,	aesthetics etc.
Tennis for Two – which was	Use logical reasoning to explain how	including construction materials,	
played on a Brookhaven	some simple algorithms work and to	textiles and ingredients, according	
National Laboratory	detect and correct errors in	to their functional properties and	
oscilloscope.	algorithms and programs.	aesthetic qualities.	
• Steve Russell, 1962,		Select from and use a wider range	
designed "SpaceWar!"	Design Criteria	of tools and equipment to perform	
which was made for	You need to create a game using	practical tasks	
computers.	Scratch and a controller to play it	[for example, cutting, shaping,	
 Nolan Bushnell and 	with. You can decide on the	joining and finishing], accurately.	
Ted Dabney created the first	audience for the game and the	Understand and use electrical	
arcade game "Computer	controller. The controller must be	systems in their products [for	
Space" in 1971. "Pong" was	durable and easy to use.	example, series circuits	
then made by Bushnell in		incorporating switches, bulbs,	
1972. Bushnell and Dabney	This part of the unit links to the Year	buzzers and motors].	
went on to be the founders	3 Computer Science objectives.	Apply their understanding of	
of Atari Computers, which	Please see the <u>computing overview</u>	computing to program, monitor and	
	to ensure children are meeting	control their products.	

re-released Pong in 1975 as	these curriculum objectives	Computing NC Links:	
a home video game.	throughout this episode.	design, write and debug programs	
 1989 Nintendo 		that accomplish specific goals; solve	
introduced the Game Boy	Observe a range of working games	problems by decomposing them	
system.	that use repetition. Decompose the	into smaller parts.	
• 1994 PS1	key elements and use logical	Use sequence and repetition in	
• 2001 Xbox	reasoning to predict what is going to	programs; work with various	
	happen. (https://scratch.mit.edu/	forms of input.	
Research into controllers/gaming	studios/5835878/) Use the PRIMM	Use logical reasoning to explain how	
systems through time. How have	approach when looking at the	some simple algorithms work and to	
they changed? Why have they	algorithms (Predict, Run,	detect and correct errors in	
needed to change? What has	Investigate, Modify, Make). In the	algorithms and programs	
helped them to change?	design element, just focus on PRI.		
	Express that algorithms must	Create the game using Scratch,	
Acknowledge that a game controller	execute in a specific order.	according to their plan. Design,	
is a type of computer input and an		write and debug the program to	
algorithm then decides what	Explore the controls required for	create a playable game that uses	
happens after a button press.	the games to be played (think about	repetition.	
Identify different ways in which a	which keys can be controlled by the		
controller can be connected to	Makey Makey). Generate ideas	Measure, mark out, cut and shape	
control a game. E.G. buttons,	around how the Makey Makey kit	the materials and components	
analogue sticks, joy sticks, VR	can be programmed to create a	required to build the controller with	
headsets/cameras, voice control,	suitable controller. (Note: You can	some accuracy.	
motion control (like Switch	also control WASDFG keys by using		
controllers). Look at a range of	the jumper wires -	Assemble, join and combine the	
these controllers (if possible play	https://www.youtube.com/	materials and components to create	
games with them) and use logical	watch?v=ulxE_5zFjN8&t=113s)	the controller.	
reasoning and decomposition to			
explain how each one works	Decide on the audience for the	Finish the controller so that it is	
-	game and controller and use this to	aesthetically pleasing and meets the	
Identify how a controller is made	influence design criteria. Children to	design criteria. Combine the	
and acknowledge the different	come up with 3 criteria (in addition	electrical components from the	
components. (For typical		Makey Makey kit and connect these	

		-	
controllers, link this to open/closed	to those above) that link specifically	to the laptop to work with the	
circuits and switches) This video is	back to the audience/game design.	Scratch game.	
useful for teacher subject			
knowledge:	Children to gather information		
https://www.youtube.com/	about the needs and wants of the		
watch?v=vQesgAtr2e4	audience. Gather data using a		
	<u>Google Form</u> and use this to inform		
	design ideas.		
	Generate a range of design ideas for		
	the controller using annotated		
	sketches and exploded diagrams.		
	Indicate how the design appeals to		
	the intended audience and explain		
	how the design will work. Create a		
	list of required materials and		
	equipment. Children must link this		
	knowledge back to conductivity and		
	an understanding of how to make a		
	closed series circuit. Explain their		
	choice of materials and components		
	according to functional properties		
	and aesthetic qualities – link back to		
	design criteria.		
	Create a prototype controller using		
	playdough to see how the controller		
	will work with the game.		
	Children to practise using		
	appropriate measuring, cutting,		
	shaping, joining and finishing		
	techniques for the materials they		

have selected. Build on	_
understanding of how to strengthen	
materials from Year 2 to ensure that	
the controller is durable.	
Create a plan for the video game	
using Scratch (this MUST include	
repetition). Children may choose to	
modify one of the games above or	
they can start from scratch. Make a	
rough note of the algorithms that	
might be used and explain how this	
will work. It may be useful to create	
a storyboard to plan out the game.	

Commented [C1]: Do we need to make this more specific once we know what they're going to make the controllers out of?

Episode 4 – Create a device for a purpose.

Ideas for this episode:

https://stemeducationguide.com/makey-makey-games/ There is a list of ideas and how to create them under the video.

https://youtu.be/rfQqh7iCcOU https://www.youtube.com/watch?v=hztYhF2JAtk https://makeymakey.com/pages/kit-project-guides https://www.instructables.com/makeymakey/

By the end of this learning sequence, children will know:

• About real world electrical products that are useful.

• How to create design criteria by gathering information about user needs and using these to generate annotated sketches and exploded diagrams, explaining how products will work.

• How to design, write and debug programs that use repetition. (Computing)

• How to select from and use a range of tools and equipment to perform practical tasks, and how to incorporate electrical/computing components into a product.

• How to evaluate against a design criteria and draw upon feedback from the intended user to make amendments.

Research	Design	Make	Evaluate
Procedural skill:	Procedural skill:	Procedural skill:	Procedural skill:
Identify some of the great designers	Design with purpose by identifying	Be able to create series circuits.	Improve upon existing designs,
in all of the areas of study (including	opportunities to design.	Control and monitor models using	giving reasons for choices.
pioneers in horticultural techniques)	Make products by working	software designed for this purpose.	Refine work and techniques as work
to generate ideas for designs.	efficiently (such as by carefully	Make products by working	progresses, continually evaluating
Disassemble products to understand	selecting materials).	efficiently (such as by carefully	the product design.
how they work.	Choose suitable techniques to	selecting materials).	
	construct products.	Refine work and techniques as work	NC links:
NC links:	Strengthen materials using suitable	progresses, continually evaluating	Pupils should be taught to:
Pupils should be taught to:	techniques.	the product design	Evaluate their ideas and products
understand and use electrical		Choose suitable techniques to	against their own design criteria and
systems in their products [for		construct products.	consider the views of others to
example, series circuits	NC links:	Strengthen materials using suitable	improve their work.
incorporating switches, bulbs,	Pupils should be taught to:	techniques.	
buzzers and motors]	Use research and develop design	Create series circuits.	Evaluate the device against the
Investigate and analyse a range of	criteria to inform the design of	Cut materials accurately and safely	design criteria to determine
existing products.	innovative, functional, appealing	by selecting appropriate tools.	whether it is fit for purpose. Identify
	products that are fit for purpose,	Measure and mark out to the	the strengths and areas for
		nearest millimetre.	development, considering the views

Understand how key events and	aimed at particular individuals or	Select appropriate joining	of the intended audience.
individuals in design and technology	groups.	techniques.	Opportunity for the intended
have helped shape the world.	Generate, develop, model and		audience to use the device at this
	communicate their ideas through	NC links:	point to provide feedback.
Research into useful electrical	discussion, annotated sketches,	Pupils should be taught to:	
devices (e.g. alarm systems, security	cross-sectional and exploded	Select from and use a wider range	Use the feedback from evaluation to
camera – like the cat photo booth in	diagrams, prototypes, pattern	of materials and components,	suggest improvements and
the video above, exercise dance	pieces and computer-aided design.	including construction materials,	change/adapt the design of the
game, presentation clicker,	Computing NC Links:	textiles and ingredients, according	device accordingly. E.G. making it
feedback slider/clicker) and those	Use logical reasoning to explain how	to their functional properties and	easier to use, changing the
who invented them. How have	some simple algorithms work and to	aesthetic qualities.	aesthetics etc.
these changed the world?	detect and correct errors in	Select from and use a wider range	
	algorithms and programs.	of tools and equipment to perform	
Research into different useful		practical tasks	
MakeyMakey projects that can be	Design Criteria	[for example, cutting, shaping,	
completed. Use the PRIMM method	You need to create a useful device	joining and finishing], accurately.	
(Predict, Run, Investigate, Modify	using the MakeyMakey kit. You	Understand and use electrical	
and Make) to support	need to develop the design criteria	systems in their products [for	
understanding of how it works and	based on your intended audience.	example, series circuits	
how it can be modified.		incorporating switches, bulbs,	
	This part of the unit links to the Year	buzzers and motors].	
	3 Computer Science objectives.	Apply their understanding of	
	Please see the <u>computing overview</u>	computing to program, monitor and	
	to ensure children are meeting	control their products.	
	these curriculum objectives	Computing NC Links:	
	throughout this episode.	design, write and debug programs	
		that accomplish specific goals; solve	
	Decide on the audience for the	problems by decomposing them	
	device and use this to influence	into smaller parts.	
	design criteria. Children to come up	Use sequence and repetition in	
	with 3 criteria.	programs; work with various	
		forms of input.	

Children to gather information	Use logical reasoning to explain how	
about the needs and wants of the	some simple algorithms work and to	
audience. Gather data using a	detect and correct errors in	
Google Form and use this to inform	algorithms and programs	
design ideas.		
	Create the program using Scratch,	
Generate a range of design ideas for	according to their plan. Design,	
the device using annotated sketches	write and debug the program to	
and exploded diagrams. Indicate	achieve a specific outcome. This	
how the design appeals to the	must include sequencing, repetition	
intended audience and explain how	and wait functions.	
the design will work, including the		
use of inputs and outputs. Create a	Measure, mark out, cut and shape	
list of required materials and	the materials and components	
equipment. Children must link this	required to build the device with	
knowledge back to conductivity and	some accuracy.	
an understanding of how to make a	,	
closed series circuit. Explain their	Assemble, join and combine the	
choice of materials and components	materials and components to create	
according to functional properties	the device	
and aesthetic qualities – link back to		
design criteria	Finish the device so that it is	
	aesthetically pleasing and meets the	
Create a prototype of the device to	design criteria. Combine the	
support the design process and	electrical components from the	
determine how the device will	Makey Makey kit and connect these	
communicate with the	to the lanton to work with the	
programming on the PC	Scratch program	
programming on the r.c.		
Create a plan for the programming		
using Scratch (this MUST include		
ropotition, soquencing and wait		
functions) Children may choose to		
runctions). Children may choose to		

-		
modify existing code or they can		1
start from scratch. Make a rough		
note of the algorithms that might be		
used and explain how this will work		
with their device. It may be useful		
to create a storyboard to plan out		
the programming required.		
Children to practise using		
appropriate measuring, cutting,		
shaping, joining and finishing		
techniques for the materials they		
have selected. Note: this will be		
entirely dependent upon the device		
they choose to create and the		
design behind it.		
		1
I I I I I I I I I I I I I I I I I I I	1	1

Commented [C2]: Do we need to make this more specific once we know what they're going to make the controllers out of?